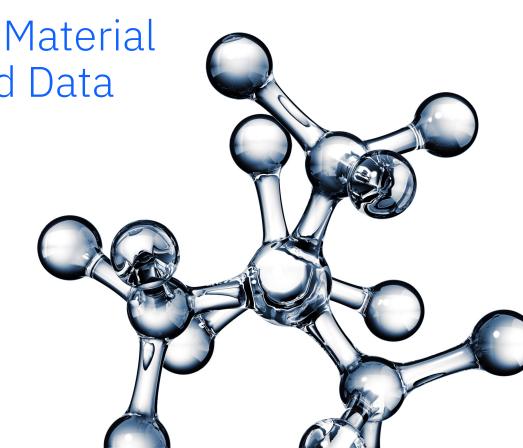


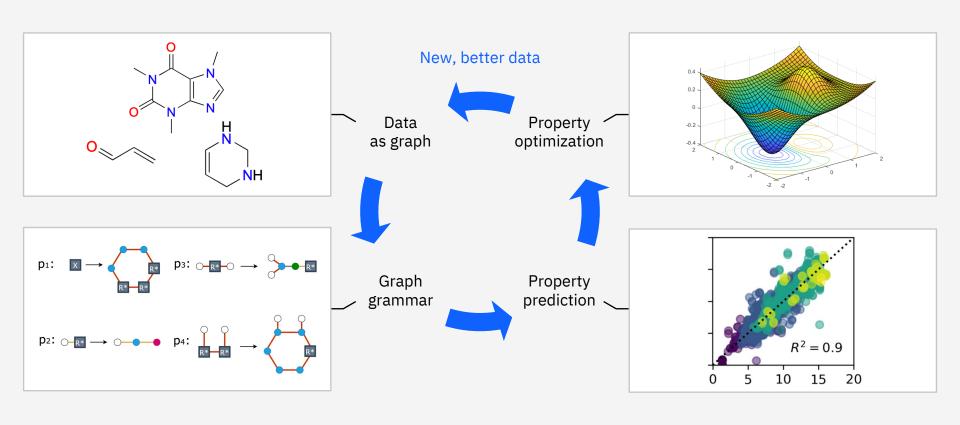
MIT-IBM Watson AI Lab, IBM Research



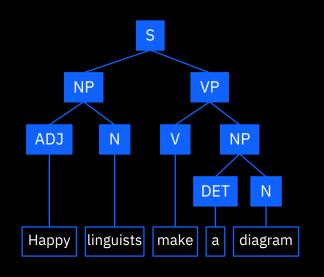
Introduction

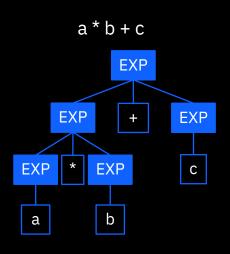
- Molecular generation is a key step in drug design and material discovery
- Deep learning-based generative models are quite effective, but data-hungry
- We propose a data-efficient generation method (E.g., requiring 10~100 training examples, as opposed to 81k in deep learning)
- In this method, we treat molecules as graphs and learn a grammar that generates them

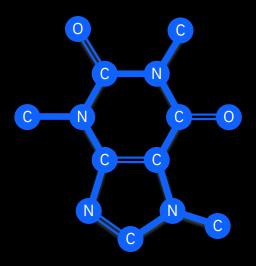
Graph-based design for drugs/materials



Grammars





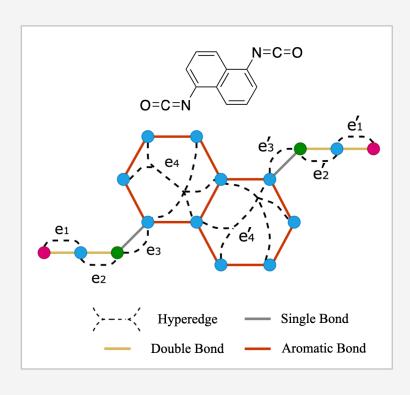


English

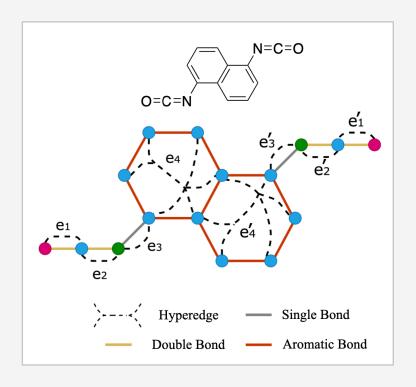
Programs

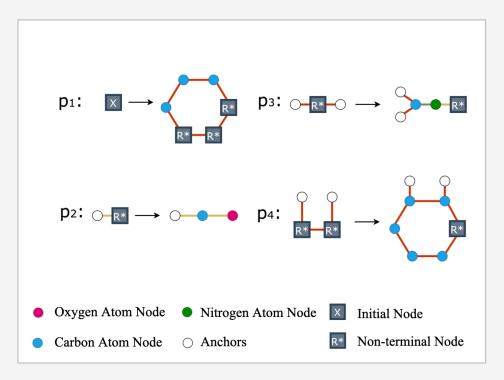
Graphs also have a grammar

Molecular graphs

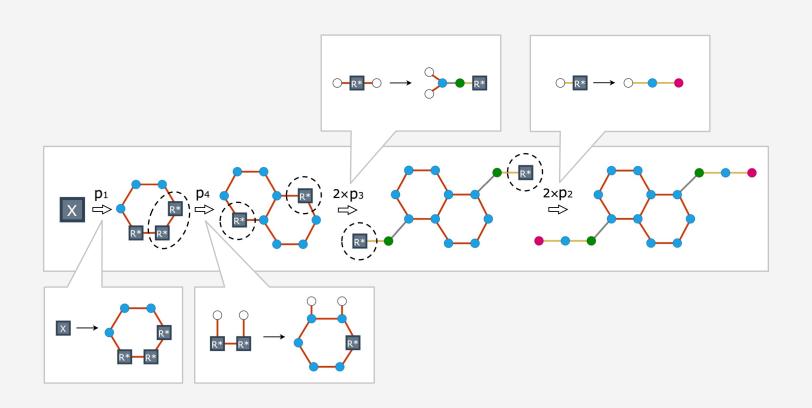


Molecular graphs and graph grammar

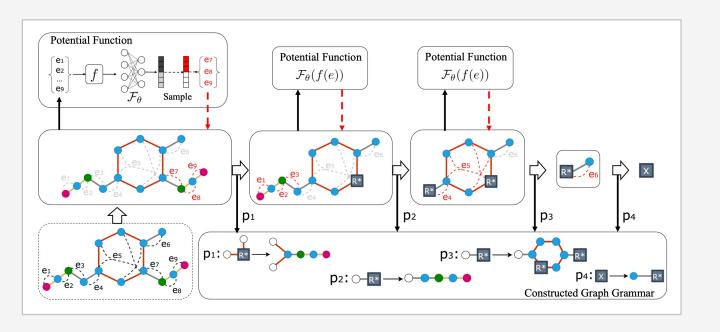




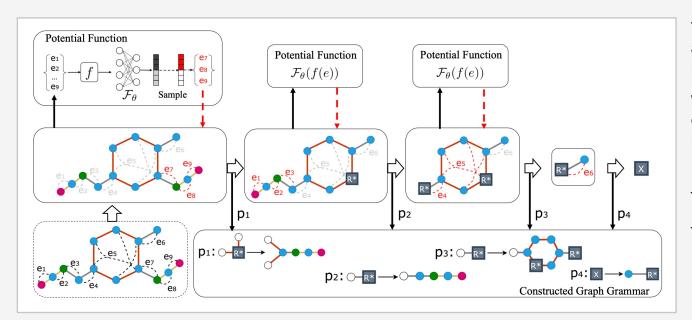
Graph generation using grammar



How can we get a grammar?



How can we get an optimal grammar?



There are many ways to remove a component from a graph and make a production rule.

We parameterize the selection of edges and learn the model parameters by optimizing metrics of interest:

- molecule diversity
- synthesizability

Experimental results compared with state-of-the-art methods

Method	Valid	Unique	Div.	Chamfer	RS	Memb.
Train data	100%	100%	0.61	0.00	100%	100%
GraphNVP	0.16%	-	-	-	0.00%	0.00%
JT-VAE	100%	5.8%	0.72	0.85	5.50%	66.5%
NierVAE	100%	99.6%	0.83	0.76	1.85%	0.05%
MHG	100%	75.9%	0.88	0.83	2.97%	12.1%
STONED	100%	100%	0.85	0.86	5.63%	79.8%
DEG	100%	100%	0.86	0.87	27.2%	96.3%

These are results for isocyanates (11 training examples)

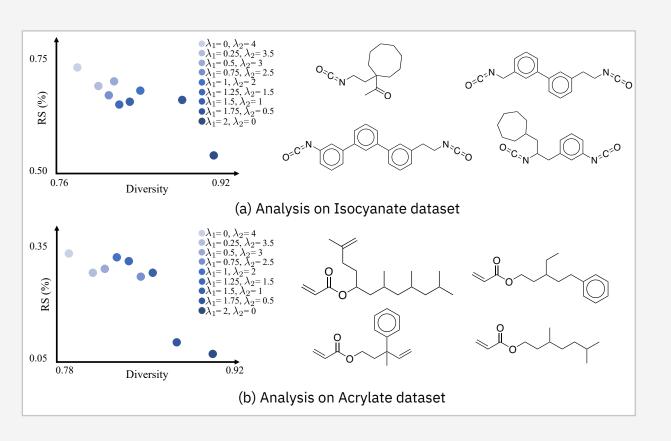
Results for acrylates and chain extenders (not shown) conclude similar findings

Sample quality

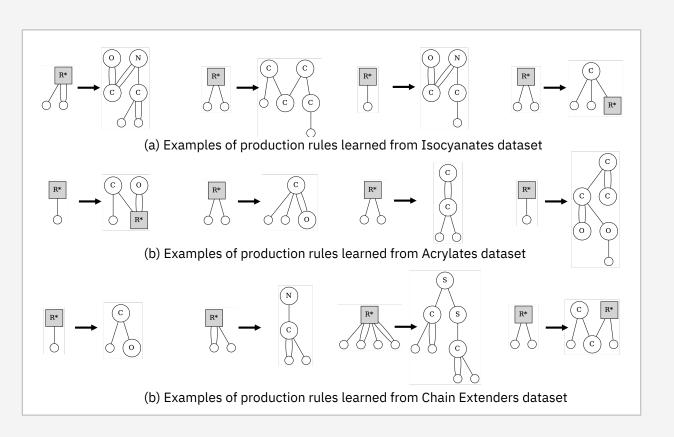
Synthesizabilit

Class

Examples of generated molecules demonstrating a variety of structures



Examples of generated rules



Summary

- We have presented a molecular generation method by using limited training data
- In this method, we treat molecules as graphs and learn a grammar that generates them
- The automated generation will significantly speed up the pipeline of identifying better molecules, used in drugs and materials

– Paper: Guo et al. Data-Efficient Graph Grammar Learning for Molecular Generation. ICLR, 2022

