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Introduction

— Molecular generation is a key step in drug design
and material discovery

— Deep learning-based generative models are quite
effective, but data-hungry

— We propose a data-efficient generation method
(E.g., requiring 10~100 training examples, as
opposed to 81k in deep learning)

— In this method, we treat molecules as graphs and
learn a grammar that generates them




Graph-based design for drugs/materials
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Grammars
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Molecular graphs

‘: -—--<{  Hyperedge = Single Bond

Double Bond === Aromatic Bond



Molecular graphs and graph grammar
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Graph generation using grammar
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How can we get a grammar?
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Constructed Graph Grammar




How can we get an optimal grammar?
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Experimental results compared with state-of-the-art methods

Method Valid Unique Div. Chamfer| | RS Memb.
Train data 100% 100% 0.61 0.00 100% 100%
GraphNVP 0.16% - - - 0.00% 0.00%
JT-VAE 100% 5.8% 0.72 0.85 5.50% 66.5%
NierVAE 100% 99.6% 0.83 0.76 1.85% 0.05%
MHG 100% 75.9% 0.88 0.83 2.97% 12.1%
STONED 100% 100% 0.85 0.86 5.63% 79.8%
DEG 100% 100% 0.86 0.87 27.2% 96.3%

These are results for isocyanates
(11 training examples)

Results for acrylates and chain
extenders (not shown) conclude
similar findings



Examples of generated molecules demonstrating a variety of structures
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(b) Analysis on Acrylate dataset



Examples of generated rules
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(a) Examples of production rules learned from Isocyanates dataset
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(b) Examples of production rules learned from Acrylates dataset
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(b) Examples of production rules learned from Chain Extenders dataset



summary

— We have presented a molecular generation method by using limited training data
— In this method, we treat molecules as graphs and learn a grammar that generates them

— The automated generation will significantly speed up the pipeline of identifying better
molecules, used in drugs and materials

— Paper: Guo et al. Data-Efficient Graph Grammar Learning for Molecular Generation. ICLR, 2022



